Login

Columbus Blue Jackets
GP: 14 | W: 6 | L: 8 | OTL: 0 | P: 12
GF: 39 | GA: 52 | PP%: 18.18% | PK%: 77.36%
GM : Fredrik Omdal | Morale : 47 | Team Overall : 71
Next Games #226 vs Philadelphia Flyers
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Columbus Blue Jackets
6-8-0, 12pts
4
FINAL
2 Anaheim Ducks
7-5-1, 15pts
Team Stats
W2StreakL1
2-5-0Home Record3-4-0
4-3-0Away Record4-1-1
6-4-0Last 10 Games6-4-0
2.79Goals Per Game3.46
3.71Goals Against Per Game2.85
18.18%Power Play Percentage15.87%
77.36%Penalty Kill Percentage72.00%
Columbus Blue Jackets
6-8-0, 12pts
2
FINAL
1 New Jersey Devils
8-3-4, 20pts
Team Stats
W2StreakL2
2-5-0Home Record3-2-2
4-3-0Away Record5-1-2
6-4-0Last 10 Games6-2-2
2.79Goals Per Game2.80
3.71Goals Against Per Game2.53
18.18%Power Play Percentage24.36%
77.36%Penalty Kill Percentage84.31%
Columbus Blue Jackets
6-8-0, 12pts
2022-11-22
Philadelphia Flyers
6-4-2, 14pts
Team Stats
W2StreakL1
2-5-0Home Record3-3-1
4-3-0Away Record3-1-1
6-4-0Last 10 Games6-2-2
2.79Goals Per Game2.67
3.71Goals Against Per Game2.67
18.18%Power Play Percentage19.64%
77.36%Penalty Kill Percentage74.60%
Philadelphia Flyers
6-4-2, 14pts
2022-11-25
Columbus Blue Jackets
6-8-0, 12pts
Team Stats
L1StreakW2
3-3-1Home Record2-5-0
3-1-1Away Record4-3-0
6-2-2Last 10 Games6-4-0
2.67Goals Per Game2.79
2.75Goals Against Per Game2.79
19.64%Power Play Percentage18.18%
74.60%Penalty Kill Percentage77.36%
Columbus Blue Jackets
6-8-0, 12pts
2022-11-28
Toronto Maple Leafs
6-5-2, 14pts
Team Stats
W2StreakL1
2-5-0Home Record3-2-2
4-3-0Away Record3-3-0
6-4-0Last 10 Games4-5-1
2.79Goals Per Game2.69
3.71Goals Against Per Game2.69
18.18%Power Play Percentage10.00%
77.36%Penalty Kill Percentage86.67%
Team Leaders
Jack RoslovicGoals
Jack Roslovic
5
Patrik LaineAssists
Patrik Laine
9
Patrik LainePoints
Patrik Laine
12
Alexandre TexierPlus/Minus
Alexandre Texier
6
Elvis MerzlikinsWins
Elvis Merzlikins
5
Joonas KorpisaloSave Percentage
Joonas Korpisalo
0.909

Team Stats
Goals For
39
2.79 GFG
Shots For
426
30.43 Avg
Power Play Percentage
18.2%
8 GF
Offensive Zone Start
38.1%
Goals Against
52
3.71 GAA
Shots Against
425
30.36 Avg
Penalty Kill Percentage
77.4%%
12 GA
Defensive Zone Start
35.6%
Team Info

General ManagerFredrik Omdal
CoachFredrik Omdal
DivisionMetropolitan Division
ConferenceEastern Conference
CaptainJakub Voracek
Assistant #1Boone Jenner
Assistant #2Justin Faulk


Arena Info

NameArena
Capacity22,000
Attendance20,454
Season Tickets11,000


Roster Info

Pro Team22
Farm Team25
Contract Limit47 / 60
Prospects18


Salary Cap

Estimated Season Salary Cap70,834,195$
Available Salary Cap10,665,805$
Special Salary Cap Value0$
Players In Salary Cap22


Finance

Year to Date Revenue7,851,667$
Year To Date Expenses11,623,787$
Estimated Season Revenue38,136,668$
Estimated Season Expenses60,185,384$
Current Bank Account50,337,641$
Projected Bank Account28,999,407$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Patrik Laine0XX100.0067438789787977883885916780676781527802417,500,000$
2Boone Jenner (A)0XX100.0079448882768576829578928184757583507702913,750,000$
3Oliver Bjorkstrand0X100.0076439384687894873979906825706780547602745,400,000$
4Jakub Voracek (C)0XX100.0061428383787692833190696466878769527503338,250,000$
5Gustav Nyquist0XXX100.0065418981667867744080838075565674537203325,500,000$
6Jack Roslovic0XX100.0069429482696890727778836825686875567202511,838,362$
7Corey Perry0X100.00735777767765917444717462619299725371N03721,250,000$
8Alexandre Texier0XX100.0063418983697068614171878280595976567002321,525,000$
9Eric Robinson0XX100.007944917575678763447073862563637351700271975,000$
10Max Domi0XX100.0061517885686489674379686225696971406802715,300,000$
11Mark Jankowski0XX100.006142927577707463786371782563636555670281750,000$
12Cole Sillinger (R)0X100.007754868275666564776572652554546952660193925,000$
13Justin Faulk (A)0X100.0085568384788892732569698525788072567503036,500,000$
14Zach Werenski0X100.0065438995809577872574658025676773497402515,000,000$
15Vladislav Gavrikov0X100.0081457680798693622565589525696467507302722,800,000$
16Andrew Peeke0X100.008859797975837660255253952558586453710242787,500$
17Jake Bean0X100.0067428881708180662561557675585964496702432,333,333$
18Dean Kukan0X100.0075438877706964642554497525636362436502911,650,000$
Scratches
1Brian Boyle0XX100.007976877291586160636275832553537051690381937,500$
2Zach Bogosian0X100.0089887080776772552549487175838061336703231,062,500$
Farm Team
1Kevin Stenlund0XX100.0082818571816364617659576954545462476202611,050,000$
2Yegor Chinakhov (R)0X100.007142918466636065256060647552526444610212925,000$
3Liam Foudy (R)0XXX100.007872928173616162786060655747476451610221894,167$
4Carson Meyer0X99.008645866567517460256258692546466339590251820,000$
5Josh Dunne0X100.007580647981515054694657615545455846580241925,000$
6Josh Ho-Sang0X100.007064857664524963505963616145456350580261750,000$
7Trey Fix-Wolansky0X100.006563706964616162505863586045456139570231809,166$
8Jamie Devane0X100.008087656087505148504148644649485243560311750,000$
9Tyler Angle (R)0X100.006962866362636458745953595145455844560223850,833$
10Josh Melnick0XX100.007465966665626455704956615445455944560271750,000$
11Cole Fonstad (R)0XX100.007060937161504956715157595545455943550221750,000$
12Anatolii Golyshev0XX100.006863816963403656504662586045455843540271750,000$
13Adam Boqvist0X100.006541928464726974255561642560606644620221894,167$
14Gavin Bayreuther0X99.007775857374626260255447725354545942620282750,000$
15Gabriel Carlsson0X99.006943917979605760255348702559595941610251750,000$
16Scott Harrington0X100.0080769070765862472534416739626252435802911,633,333$
17Jake Christiansen (R)0X100.007644996773546254253954632545455841560232925,000$
18Jesse Lees0X100.007871956771383746253739613745444943530271750,000$
19Emil Bemstrom0XX100.007343968270576069446168622558586828620231925,000$
20Adam Johnson0XX100.007064846264555751645047594545455436530281750,000$
21Billy Sweezey0X100.007076576376606446253541583944445035540261750,000$
22Zac Leslie0X100.006664706864535452254941573944445236530281750,000$
TEAM AVERAGE99.93735785767265686345606269455858654664
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Elvis Merzlikins0100.007680777575747073727295596076487102814,000,000$
2Joonas Korpisalo0100.006165647865668068666191616265556602812,800,000$
Scratches
Farm Team
1Daniil Tarasov (R)0100.00474354804847505349493044444844500231925,000$
2Jean-Francois Berube098.00475164664447495247483048484840490311750,000$
3Peyton Jones (R)0100.00444151854544454945454544444536480261750,000$
TEAM AVERAGE99.6055566277555659595655585152564557
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Fredrik Omdal60606060166050SWE4021,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Patrik LaineColumbus Blue JacketsLW/RW143912-62018125717355.26%527019.340445320001120026.92%26132000.8900000021
2Oliver BjorkstrandColumbus Blue JacketsRW144711-540231738143110.53%124017.18134633000081027.27%221311000.9100000010
3Alexandre TexierColumbus Blue JacketsC/LW142810600915246168.33%519013.590221270002280133.33%2452001.0500000011
4Jack RoslovicColumbus Blue JacketsC/RW145510-40010232892017.86%221715.55123232000002148.07%233115000.9200000200
5Jakub VoracekColumbus Blue JacketsLW/RW14448-780151332171512.50%223016.4700005000071010.00%10103000.6900000002
6Zach WerenskiColumbus Blue JacketsD14077-3135815311080.00%931822.73022538000133000.00%018000.4400010000
7Corey PerryColumbus Blue JacketsRW141562802192213184.55%214010.070000100000000.00%391000.8500000010
8Justin FaulkColumbus Blue JacketsD1442611401516178723.53%1431722.70404438000027000.00%0418000.3800000000
9Mark JankowskiColumbus Blue JacketsC/LW1451620099152733.33%414210.1800000000051057.89%3814010.8400000100
10Boone JennerColumbus Blue JacketsC/LW14246-66029243513225.71%1027119.421013320001140056.25%30467000.4400000100
11Gustav NyquistColumbus Blue JacketsC/LW/RW14325-340141028122010.71%624417.451126321012241029.41%1764000.4100000002
12Brian BoyleColumbus Blue JacketsC/LW13224-2001410152813.33%415912.29000000110320040.22%9263000.5000000010
13Andrew PeekeColumbus Blue JacketsD141340160272315486.67%1429721.2500004011043000.00%019000.2700000000
14Cole SillingerColumbus Blue JacketsC82131403492222.22%0729.0500000000000064.71%3422000.8300000000
15Eric RobinsonColumbus Blue JacketsLW/RW14123-10069217104.76%716912.13000000002340040.00%569000.3500000000
16Jake BeanColumbus Blue JacketsD14022-6607124830.00%923516.80000023000017000.00%015000.1700000000
17Zach BogosianColumbus Blue JacketsD8011-41001465100.00%611013.780000000002000.00%001000.1800000000
18Dean KukanColumbus Blue JacketsD6011-300661300.00%59015.110000100008000.00%014000.2200000000
19Vladislav GavrikovColumbus Blue JacketsD14011-4200231817260.00%1831422.46000126000041000.00%0011000.0600000000
20Max DomiColumbus Blue JacketsC/LW7000-3004812390.00%07010.0800000000000050.00%1030000.00%00000000
Team Total or Average2523967106-4511552752594261532459.15%123410616.29814223333212393426248.66%81899109010.5200010466
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Elvis MerzlikinsColumbus Blue Jackets135700.8714.036700045348181200.00%0122100
2Joonas KorpisaloColumbus Blue Jackets51100.9092.501680077747100.00%0212100
Team Total or Average186800.8783.7283800524252283001414200


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexandre Texier (1 Way Contract)Columbus Blue JacketsC/LW231999-12-31No186 Lbs6 ft1NoNoNo2Pro Only1,525,000$1,525,000$1,277,703$No1,525,000$Link / NHL Link
Andrew Peeke (1 Way Contract)Columbus Blue JacketsD241998-12-31No197 Lbs6 ft3NoNoNo2Pro Only787,500$787,500$659,797$No787,500$Link / NHL Link
Boone Jenner (1 Way Contract)Columbus Blue JacketsC/LW291993-12-31No207 Lbs6 ft2NoNoNo1Pro Only3,750,000$3,750,000$3,141,892$NoLink / NHL Link
Brian Boyle (1 Way Contract)Columbus Blue JacketsC/LW381984-12-31No245 Lbs6 ft4NoNoNo1Pro Only937,500$937,500$785,473$NoLink / NHL Link
Cole SillingerColumbus Blue JacketsC192003-12-31Yes203 Lbs6 ft2NoNoNo3Pro & Farm925,000$925,000$775,000$No925,000$925,000$NHL Link
Corey Perry (1 Way Contract)Columbus Blue JacketsRW371985-12-31No206 Lbs6 ft3YesNoNo2Pro Only1,250,000$1,250,000$1,047,297$No1,250,000$Link / NHL Link
Dean KukanColumbus Blue JacketsD291993-12-31No186 Lbs6 ft2NoNoNo1Pro & Farm1,650,000$1,650,000$1,382,432$NoLink / NHL Link
Elvis Merzlikins (1 Way Contract)Columbus Blue JacketsG281994-12-31No185 Lbs6 ft3NoNoNo1Pro Only4,000,000$4,000,000$3,351,351$NoLink / NHL Link
Eric Robinson (1 Way Contract)Columbus Blue JacketsLW/RW271995-12-31No200 Lbs6 ft2NoNoNo1Pro Only975,000$975,000$816,892$NoLink / NHL Link
Gustav Nyquist (1 Way Contract)Columbus Blue JacketsC/LW/RW331989-12-31 04:12:32No180 Lbs5 ft11NoNoNo2Pro Only5,500,000$5,500,000$4,608,108$No5,500,000$Link / NHL Link
Jack Roslovic (1 Way Contract)Columbus Blue JacketsC/RW251997-12-31No187 Lbs6 ft1NoNoNo1Pro Only1,838,362$1,838,362$1,540,249$NoLink / NHL Link
Jake Bean (1 Way Contract)Columbus Blue JacketsD241998-12-31No186 Lbs6 ft1NoNoNo3Pro Only2,333,333$2,333,333$1,954,955$No2,333,333$2,333,333$Link / NHL Link
Jakub Voracek (1 Way Contract)Columbus Blue JacketsLW/RW331989-12-31No214 Lbs6 ft2NoNoNo3Pro Only8,250,000$8,250,000$6,912,162$No8,250,000$8,250,000$Link / NHL Link
Joonas Korpisalo (1 Way Contract)Columbus Blue JacketsG281994-12-31No192 Lbs6 ft3NoNoNo1Pro Only2,800,000$2,800,000$2,345,946$NoLink / NHL Link
Justin Faulk (1 Way Contract)Columbus Blue JacketsD301992-12-31No217 Lbs6 ft0NoNoNo3Pro Only6,500,000$6,500,000$5,445,946$No6,500,000$6,500,000$Link / NHL Link
Mark JankowskiColumbus Blue JacketsC/LW281994-12-31No202 Lbs6 ft4NoNoNo1Pro & Farm750,000$750,000$628,378$NoLink / NHL Link
Max Domi (1 Way Contract)Columbus Blue JacketsC/LW271995-12-31No192 Lbs5 ft10NoNoNo1Pro Only5,300,000$5,300,000$4,440,541$NoLink / NHL Link
Oliver Bjorkstrand (1 Way Contract)Columbus Blue JacketsRW271995-12-31No177 Lbs6 ft0NoNoNo4Pro Only5,400,000$5,400,000$4,524,324$No5,400,000$5,400,000$5,400,000$Link / NHL Link
Patrik Laine (1 Way Contract)Columbus Blue JacketsLW/RW241998-12-31No201 Lbs6 ft4NoNoNo1Pro Only7,500,000$7,500,000$6,283,784$NoLink / NHL Link
Vladislav Gavrikov (1 Way Contract)Columbus Blue JacketsD271995-12-31No214 Lbs6 ft3NoNoNo2Pro Only2,800,000$2,800,000$2,345,946$No2,800,000$Link / NHL Link
Zach Bogosian (1 Way Contract)Columbus Blue JacketsD321990-12-31No200 Lbs6 ft2NoNoNo3Pro Only1,062,500$1,062,500$890,203$No1,062,500$1,062,500$Link / NHL Link
Zach Werenski (1 Way Contract)Columbus Blue JacketsD251997-12-31No218 Lbs6 ft2NoNoNo1Pro Only5,000,000$5,000,000$4,189,189$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2228.05200 Lbs6 ft21.823,219,736$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
70,834,195$36,333,333$24,470,833$5,400,000$0$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakub VoracekBoone JennerPatrik Laine34113
2Gustav NyquistJack RoslovicOliver Bjorkstrand30122
3Alexandre TexierCole SillingerEric Robinson18221
4Max DomiMark JankowskiCorey Perry18122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach WerenskiVladislav Gavrikov36131
2Justin FaulkAndrew Peeke36131
3Jake BeanDean Kukan28131
4Zach WerenskiJustin Faulk0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Patrik LaineBoone JennerOliver Bjorkstrand50122
2Alexandre TexierJack RoslovicGustav Nyquist50122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach WerenskiJustin Faulk62113
2Jake BeanVladislav Gavrikov38122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Alexandre TexierEric Robinson60140
2Boone JennerGustav Nyquist40050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrew PeekeVladislav Gavrikov65230
2Zach WerenskiJustin Faulk35140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Boone Jenner50140Vladislav GavrikovAndrew Peeke63140
2Mark Jankowski50140Justin FaulkZach Werenski37122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Boone JennerPatrik Laine50122
2Gustav NyquistJakub Voracek50122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach WerenskiVladislav Gavrikov50131
2Andrew PeekeJustin Faulk50131
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Patrik LaineBoone JennerOliver BjorkstrandZach WerenskiJustin Faulk
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexandre TexierBoone JennerEric RobinsonAndrew PeekeVladislav Gavrikov
Extra Forwards
Normal PowerPlayPenalty Kill
Jakub Voracek, Corey Perry, Gustav NyquistJakub Voracek, Corey PerryMark Jankowski
Extra Defensemen
Normal PowerPlayPenalty Kill
Andrew Peeke, Justin Faulk, Zach WerenskiJake BeanVladislav Gavrikov, Jake Bean
Penalty Shots
Boone Jenner, Alexandre Texier, Patrik Laine, Gustav Nyquist, Jake Bean
Goalie
#1 : Elvis Merzlikins, #2 : Joonas Korpisalo


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Anaheim Ducks11000000422000000000001100000042221.0004711001210316187030106212150.00%30100.00%015431249.36%13229145.36%11221552.09%2112209189
2Carolina Hurricanes1010000024-2000000000001010000024-200.00022400002025135702884215120.00%220.00%015431249.36%13229145.36%11221552.09%2313198179
3New Jersey Devils2110000057-21010000036-31100000021120.50051015003200642319220571422298225.00%11372.73%015431249.36%13229145.36%11221552.09%412343193516
4New York Islanders211000009811010000034-11100000064220.5009162500531054192690611727369222.22%100100.00%115431249.36%13229145.36%11221552.09%432541193417
5New York Rangers31200000916-71010000025-321100000711-420.3339152400153094303034096252049700.00%9277.78%015431249.36%13229145.36%11221552.09%623666265125
6Pittsburgh Penguins1010000024-21010000024-20000000000000.000246001010291181002910421500.00%2150.00%015431249.36%13229145.36%11221552.09%2112198189
7Tampa Bay Lightning11000000321110000003210000000000021.0003580020103514912031136243133.33%3166.67%015431249.36%13229145.36%11221552.09%2111218169
8Vancouver Canucks11000000211110000002110000000000021.0002350002003011910034882211100.00%4175.00%015431249.36%13229145.36%11221552.09%2213198178
9Washington Capitals1010000026-4000000000001010000026-400.00023500101034772003291030200.00%5180.00%015431249.36%13229145.36%11221552.09%199218189
10Winnipeg Jets1010000012-11010000012-10000000000000.00012300001030911100279822200.00%4175.00%015431249.36%13229145.36%11221552.09%2112219178
Total1468000003952-13725000001624-8743000002328-5120.4293967106001414110426143142141042512311527544818.18%531277.36%115431249.36%13229145.36%11221552.09%298170294126246122
_Since Last GM Reset1468000003952-13725000001624-8743000002328-5120.4293967106001414110426143142141042512311527544818.18%531277.36%115431249.36%13229145.36%11221552.09%298170294126246122
_Vs Conference1147000003247-15514000001321-8633000001926-780.364325587001310903351171041140334969321039615.38%421076.19%115431249.36%13229145.36%11221552.09%2321312339919397
_Vs Division1037000002945-16404000001019-9633000001926-760.30029507900111080300103951020303838718636513.89%39976.92%115431249.36%13229145.36%11221552.09%2111192119017688

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1412W2396710642642512311527500
All Games
GPWLOTWOTL SOWSOLGFGA
146800003952
Home Games
GPWLOTWOTL SOWSOLGFGA
72500001624
Visitor Games
GPWLOTWOTL SOWSOLGFGA
74300002328
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
44818.18%531277.36%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
14314214101414110
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
15431249.36%13229145.36%11221552.09%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
298170294126246122


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-112New York Rangers5Columbus Blue Jackets2BLBoxScore
3 - 2022-10-1315Columbus Blue Jackets2Washington Capitals6ALBoxScore
6 - 2022-10-1631Columbus Blue Jackets1New York Rangers8ALBoxScore
11 - 2022-10-2156Winnipeg Jets2Columbus Blue Jackets1BLBoxScore
16 - 2022-10-2680Vancouver Canucks1Columbus Blue Jackets2BWBoxScore
20 - 2022-10-30102New Jersey Devils6Columbus Blue Jackets3BLBoxScore
26 - 2022-11-05130New York Islanders4Columbus Blue Jackets3BLBoxScore
28 - 2022-11-07138Columbus Blue Jackets6New York Islanders4AWBoxScore
30 - 2022-11-09153Columbus Blue Jackets6New York Rangers3AWBoxScore
32 - 2022-11-11163Tampa Bay Lightning2Columbus Blue Jackets3BWBoxScore
34 - 2022-11-13171Columbus Blue Jackets2Carolina Hurricanes4ALBoxScore
38 - 2022-11-17198Pittsburgh Penguins4Columbus Blue Jackets2BLBoxScore
40 - 2022-11-19206Columbus Blue Jackets4Anaheim Ducks2AWBoxScore
42 - 2022-11-21218Columbus Blue Jackets2New Jersey Devils1AWBoxScore
43 - 2022-11-22226Columbus Blue Jackets-Philadelphia Flyers-
46 - 2022-11-25246Philadelphia Flyers-Columbus Blue Jackets-
49 - 2022-11-28260Columbus Blue Jackets-Toronto Maple Leafs-
51 - 2022-11-30270Columbus Blue Jackets-Pittsburgh Penguins-
53 - 2022-12-02282Minnesota Wild-Columbus Blue Jackets-
56 - 2022-12-05302Columbus Blue Jackets-Colorado Avalanche-
58 - 2022-12-07311Philadelphia Flyers-Columbus Blue Jackets-
66 - 2022-12-15343Vegas Golden Knights-Columbus Blue Jackets-
69 - 2022-12-18364Columbus Blue Jackets-Philadelphia Flyers-
71 - 2022-12-20375Tampa Bay Lightning-Columbus Blue Jackets-
76 - 2022-12-25398Columbus Blue Jackets-Seattle Kraken-
77 - 2022-12-26407New York Rangers-Columbus Blue Jackets-
81 - 2022-12-30429St. Louis Blues-Columbus Blue Jackets-
85 - 2023-01-03450Columbus Blue Jackets-San Jose Sharks-
88 - 2023-01-06462Colorado Avalanche-Columbus Blue Jackets-
92 - 2023-01-10488New Jersey Devils-Columbus Blue Jackets-
98 - 2023-01-16517Calgary Flames-Columbus Blue Jackets-
100 - 2023-01-18529Columbus Blue Jackets-Florida Panthers-
105 - 2023-01-23547Columbus Blue Jackets-Nashville Predators-
106 - 2023-01-24554Boston Bruins-Columbus Blue Jackets-
110 - 2023-01-28575Columbus Blue Jackets-Buffalo Sabres-
112 - 2023-01-30584Columbus Blue Jackets-Vancouver Canucks-
114 - 2023-02-01593Buffalo Sabres-Columbus Blue Jackets-
117 - 2023-02-04616Florida Panthers-Columbus Blue Jackets-
119 - 2023-02-06625Columbus Blue Jackets-New Jersey Devils-
123 - 2023-02-10646Columbus Blue Jackets-Toronto Maple Leafs-
125 - 2023-02-12656Winnipeg Jets-Columbus Blue Jackets-
129 - 2023-02-16682Pittsburgh Penguins-Columbus Blue Jackets-
131 - 2023-02-18689Columbus Blue Jackets-Washington Capitals-
133 - 2023-02-20703Columbus Blue Jackets-Pittsburgh Penguins-
136 - 2023-02-23719Washington Capitals-Columbus Blue Jackets-
138 - 2023-02-25727Columbus Blue Jackets-Calgary Flames-
143 - 2023-03-02746Chicago Blackhawks-Columbus Blue Jackets-
145 - 2023-03-04760Columbus Blue Jackets-New York Islanders-
148 - 2023-03-07779Columbus Blue Jackets-Dallas Stars-
150 - 2023-03-09786Arizona Coyotes-Columbus Blue Jackets-
155 - 2023-03-14813Los Angeles Kings-Columbus Blue Jackets-
158 - 2023-03-17831Columbus Blue Jackets-New York Rangers-
162 - 2023-03-21848Edmonton Oilers-Columbus Blue Jackets-
167 - 2023-03-26874Washington Capitals-Columbus Blue Jackets-
170 - 2023-03-29892Columbus Blue Jackets-Montreal Canadiens-
172 - 2023-03-31901Columbus Blue Jackets-Vegas Golden Knights-
174 - 2023-04-02910Columbus Blue Jackets-Arizona Coyotes-
175 - 2023-04-03916Detroit Red Wings-Columbus Blue Jackets-
180 - 2023-04-08941New York Islanders-Columbus Blue Jackets-
182 - 2023-04-10947Columbus Blue Jackets-Boston Bruins-
186 - 2023-04-14971Columbus Blue Jackets-Anaheim Ducks-
188 - 2023-04-16978Seattle Kraken-Columbus Blue Jackets-
192 - 2023-04-201004San Jose Sharks-Columbus Blue Jackets-
199 - 2023-04-271034Carolina Hurricanes-Columbus Blue Jackets-
203 - 2023-05-011054Columbus Blue Jackets-Chicago Blackhawks-
205 - 2023-05-031066Montreal Canadiens-Columbus Blue Jackets-
207 - 2023-05-051073Columbus Blue Jackets-Los Angeles Kings-
Trade Deadline --- Trades can’t be done after this day is simulated!
212 - 2023-05-101096Toronto Maple Leafs-Columbus Blue Jackets-
219 - 2023-05-171126Carolina Hurricanes-Columbus Blue Jackets-
222 - 2023-05-201144Columbus Blue Jackets-Tampa Bay Lightning-
224 - 2023-05-221156Dallas Stars-Columbus Blue Jackets-
226 - 2023-05-241163Columbus Blue Jackets-St. Louis Blues-
228 - 2023-05-261174Columbus Blue Jackets-Carolina Hurricanes-
230 - 2023-05-281183Columbus Blue Jackets-Winnipeg Jets-
233 - 2023-05-311198Anaheim Ducks-Columbus Blue Jackets-
235 - 2023-06-021207Columbus Blue Jackets-Edmonton Oilers-
238 - 2023-06-051221Columbus Blue Jackets-Ottawa Senators-
241 - 2023-06-081235Nashville Predators-Columbus Blue Jackets-
242 - 2023-06-091245Columbus Blue Jackets-Detroit Red Wings-
245 - 2023-06-121258Columbus Blue Jackets-Minnesota Wild-
249 - 2023-06-161277Ottawa Senators-Columbus Blue Jackets-
255 - 2023-06-221301Vancouver Canucks-Columbus Blue Jackets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Capacity8000500030005150850
Ticket Price78452517170
Attendance52,54829,02220,61235,3725,626
Attendance PCT93.84%82.92%98.15%98.12%94.55%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
34 20454 - 92.97% 1,121,667$7,851,667$22000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
11,623,787$ 70,834,195$ 70,834,195$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
70,834,195$ 11,461,625$ 0$ 22 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
38,136,668$ 217 277,352$ 60,185,384$

Team Total Estimate
Estimated Season Expenses Current Bank Account Projected Bank Account
62,331,014$ 50,337,641$ 28,999,407$
Estimated Season Salary CapAvailable Salary CapMaximum Salary CapOver Minimum Salary Cap
70,834,195$ 10,665,805$ 81,500,000$ 10,634,195$



Depth Chart

Left WingCenterRight Wing
Patrik LaineAGE:24PO:81OV:78
Boone JennerAGE:29PO:83OV:77
Jakub VoracekAGE:33PO:69OV:75
Gustav NyquistAGE:33PO:74OV:72
Alexandre TexierAGE:23PO:76OV:70
Eric RobinsonAGE:27PO:73OV:70
Brian BoyleAGE:38PO:70OV:69
Max DomiAGE:27PO:71OV:68
Mark JankowskiAGE:28PO:65OV:67
Emil BemstromAGE:23PO:68OV:62
Liam Foudy (R)AGE:22PO:64OV:61
Jamie DevaneAGE:31PO:52OV:56
Cole Fonstad (R)AGE:22PO:59OV:55
Anatolii GolyshevAGE:27PO:58OV:54
Adam JohnsonAGE:28PO:54OV:53
Boone JennerAGE:29PO:83OV:77
Jack RoslovicAGE:25PO:75OV:72
Gustav NyquistAGE:33PO:74OV:72
Alexandre TexierAGE:23PO:76OV:70
Brian BoyleAGE:38PO:70OV:69
Max DomiAGE:27PO:71OV:68
Mark JankowskiAGE:28PO:65OV:67
Cole Sillinger (R)AGE:19PO:69OV:66
Kevin StenlundAGE:26PO:62OV:62
Liam Foudy (R)AGE:22PO:64OV:61
Josh DunneAGE:24PO:58OV:58
Josh MelnickAGE:27PO:59OV:56
Tyler Angle (R)AGE:22PO:58OV:56
Cole Fonstad (R)AGE:22PO:59OV:55
Adam JohnsonAGE:28PO:54OV:53
Patrik LaineAGE:24PO:81OV:78
Oliver BjorkstrandAGE:27PO:80OV:76
Jakub VoracekAGE:33PO:69OV:75
Jack RoslovicAGE:25PO:75OV:72
Gustav NyquistAGE:33PO:74OV:72
Corey PerryAGE:37PO:72OV:71
Eric RobinsonAGE:27PO:73OV:70
Emil BemstromAGE:23PO:68OV:62
Kevin StenlundAGE:26PO:62OV:62
Yegor Chinakhov (R)AGE:21PO:64OV:61
Liam Foudy (R)AGE:22PO:64OV:61
Carson MeyerAGE:25PO:63OV:59
Josh Ho-SangAGE:26PO:63OV:58
Trey Fix-WolanskyAGE:23PO:61OV:57
Josh MelnickAGE:27PO:59OV:56
Anatolii GolyshevAGE:27PO:58OV:54

Defense #1Defense #2Goalie
Justin FaulkAGE:30PO:72OV:75
Zach WerenskiAGE:25PO:73OV:74
Vladislav GavrikovAGE:27PO:67OV:73
Andrew PeekeAGE:24PO:64OV:71
Jake BeanAGE:24PO:64OV:67
Zach BogosianAGE:32PO:61OV:67
Dean KukanAGE:29PO:62OV:65
Adam BoqvistAGE:22PO:66OV:62
Gavin BayreutherAGE:28PO:59OV:62
Gabriel CarlssonAGE:25PO:59OV:61
Scott HarringtonAGE:29PO:52OV:58
Jake Christiansen (R)AGE:23PO:58OV:56
Billy SweezeyAGE:26PO:50OV:54
Zac LeslieAGE:28PO:52OV:53
Jesse LeesAGE:27PO:49OV:53
Elvis MerzlikinsAGE:28PO:76OV:71
Joonas KorpisaloAGE:28PO:65OV:66
Daniil Tarasov (R)AGE:23PO:48OV:50
Jean-Francois BerubeAGE:31PO:48OV:49
Peyton Jones (R)AGE:26PO:45OV:48

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Calle OdeliusColumbus Blue Jackets202239
Corson CeulemansColumbus Blue Jackets202125
Dmitri VoronkovColumbus Blue Jackets2020124
Eric HjorthColumbus Blue Jackets2019132
Guillaume RichardColumbus Blue Jackets2021101
James MalatestaColumbus Blue Jackets2021133
Kent JohnsonColumbus Blue Jackets20215
Kirill MarchenkoColumbus Blue Jackets201843
Marcus KarlbergColumbus Blue Jackets201874
Michael MilneColumbus Blue Jackets2022103
Mikael PyyhtiaColumbus Blue Jackets2020152
Nikolai MakarovColumbus Blue Jackets2021132
Ole Bjorgvik-HolmColumbus Blue JacketsLink
Samuel JohannessonColumbus Blue Jackets2020
Samuel KnazkoColumbus Blue Jackets202091
Shane WrightColumbus Blue Jackets20222
Stanislav SvozilColumbus Blue Jackets202169
Tucker RobertsonColumbus Blue Jackets2022138

Draft Picks

Year R1R2R3R4R5
2023
2024
2025
2026
2027






Columbus Blue Jackets Trade History

[2023-03-14 19:56:15] - Team Name Change : Blue Jackets changed name to Columbus Blue Jackets



[2022-11-27 23:05:07] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased. But, Blue Jackets lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[2022-11-21 21:14:29] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-11-20 21:59:10] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-11-17 21:11:26] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-11-15 23:38:13] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-11-10 23:26:58] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-11-04 23:10:20] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-11-02 23:05:43] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-10-31 13:33:09] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased. But, Blue Jackets lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[2022-10-27 21:58:39] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-10-26 00:27:12] Emil Bemstrom from Cleveland Monsters is back from Bruised Right Foot Injury.
[2022-10-26 00:27:12] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased. But, Blue Jackets lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[2022-10-26 00:27:00] Auto Lines Partial Function has been run for Cleveland Monsters.
[2022-10-23 23:44:49] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.
[2022-10-23 23:44:48] Game 50 - Emil Bemstrom from Cleveland Monsters is injured (Bruised Right Foot) and is out for 5 days.
[2022-10-23 23:44:43] Auto Lines Partial Function has been run for Cleveland Monsters.
[2022-10-21 20:41:50] Cleveland Monsters lines for next game are empty. Current rosters/lines are not erased.



No Injury or Suspension.


Columbus Blue Jackets Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Columbus Blue Jackets Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Columbus Blue Jackets Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Columbus Blue Jackets Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Columbus Blue Jackets Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA